Мономер крахмала, гликогена, целлюлозы
Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С6Н12O6) и обладает несколькими ОН-группами. За счет установления связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гликоген) полимеры. Средний размер такого полимера — несколько тысяч молекул глюкозы.
Состав белков
Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидными связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кислотной группой (—СООН), аминогруппой (—NH2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пептидной связи происходит за счет соединения кислотной группы и аминогруппы двух аминокислот, расположенных рядом в молекуле белка.
Вторичная и третичная структуры белка
Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряженными аминогруппами и отрицательно заряженными кислотными группами аминокислот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.
Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодействий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы называют третичной; именно она является биологически активной формой белка, обладающей индивидуальной специфичностью и определенной функцией.
Функции белков
Белки выполняют в живых организмах чрезвычайно разнообразные функции.
Одна из самых многочисленных групп белков — ферменты. Они выполняют функцию катализаторов химических реакций и участвуют во всех биологических процессах.
Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и соединительной ткани, а кератин является основным компонентом волос, ногтей, перьев.
Сократительная функция белков обеспечивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.
Транспортные белки связывают и переносят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспортирует молекулы кислорода и углекислого газа.
Белки-гормоны обеспечивают регуляторную функцию. Белковую природу имеет гормон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирующие работу почек, и др.
Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание крови, останавливая кровопотерю.
Энергетическую функцию белки начинают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Чаще мы наблюдаем, как пищевой белок, перевариваясь, расщепляется до аминокислот, из которых затем создаются белки, необходимые организму.
Денатурация белка
Денатурация — это утрата белковой молекулой своего нормального («природного») строения: третичной, вторичной и даже первичной структуры. При денатурации белковый клубок и спираль раскручиваются; водородные, а затем и пептидные связи разрушаются. Денатурированный белок не способен выполнять свои функции. Причинами денатурации являются высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов, органических растворителей. Примером денатурации служит варка куриного яйца. Содержимое сырого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбумина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.
Нуклеиновые кислоты
Нуклеиновые кислоты получили свое название в связи с тем, что впервые были обнаружены в клеточном ядре (лат. nucleus — ядро). Позже оказалось, что они присутствуют также в цитоплазме, пластидах и митохондриях. По химическому составу нуклеиновые кислоты — гетерополимеры, состоящие из нуклеотидов, соединенных между собой особым типом химической связи (фосфодиэфирная связь). Каждый нуклеотид, в свою очередь, состоит из трех частей: моносахарида-пентозы и связанных с ним азотистого основания и фосфорной кислоты.
Типы нуклеиновых кислот
Принято выделять два типа нуклеиновых кислот — рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК), Оба этих типа содержатся во всех живых клетках. Исключение составляют вирусы, обладающие либо только ДНК, либо только РНК.
Различия строения ДНК и РНК
Нуклеотиды, образующие молекулы ДНК и РНК, сходны по строению. Однако в нуклеотидах РНК моносахаридом является рибоза, а в нуклеотидах ДНК — дезоксирибоза. Кроме того, различается набор азотистых оснований. Три из них (аденин, гуанин, цитозин) представлены в обоих типах нуклеиновых кислот; четвертым в ДНК является тимин, в РНК — урацил.
Нуклеиновые кислоты отличаются по общей структуре: ДНК представляет собой комплементарную двуцепочечную молекулу (аденин всегда стоит напротив тимина, гуанин — напротив цитозина), РНК — одноцепочечную. Содержание ДНК в клетках относительно постоянно; содержание РНК может варьировать в зависимости от интенсивности синтеза белка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.
Функции ДНК
Выделяют три основные функции ДНК.
Хранение наследственной информации. Порядок нуклеотидов определяет первичную структуру белков. Первичная структура, в свою очередь, обуславливает свойства белков, а следовательно, особенности строения и функционирования клеток. Таким образом, в ДНК закодирована информация обо всех свойствах клеток, тканей и органов. Участок молекулы ДНК, кодирующий первичную структуру одной белковой цепи, называют геном.
Передача наследственной информации следующему поколению клеток. Эта функция осуществляется благодаря способности ДНК к удвоению (редупликации). После деления в каждую дочернюю клетку попадает одна из двух идентичных молекул ДНК, являющихся точной копией материнской ДНК.
Передача наследственной информации из ядра в цитоплазму. Почти вся ДНК находится в ядре; синтез же белка происходит в цитоплазме клетки. Соответственно, необходим посредник, передающий описание первичной структуры белка от ДНК к рибосоме. В роли такого посредника выступает информационная РНК, которая синтезируется на одной из цепей ДНК, копируя по принципу комплементарности последовательность нуклеотидов определенного гена.
Виды РНК
В зависимости от строения и выполняемой функции выделяют три вида РНК. Все они синтезируются в ядре, используя в качестве матрицы ДНК. Готовые молекулы РНК переходят в цитоплазму.
Информационная, или матричная, РНК (иРНК, мРНК) переносит информацию о первичной структуре белка от ДНК к рибосоме. Количество типов иРНК примерно соответствует числу генов (у человека — около 30–40 тыс.).
Транспортная РНК (тРНК) в основном находится в цитоплазме клетки. Функция тРНК состоит в том, чтобы переносить аминокислоты к рибосоме, где они включаются в синтезируемую белковую цепь.
Рибосомальная РНК (рРНК) — самая «весомая» группа (до 80% от общего количества РНК в клетке), однако наименее разнообразная: в каждой клетке присутствует не более четырех ее типов. Вместе с белками рРНК входит в состав рибосом — органоидов, синтезирующих белок. Масса синтезируемой в ядре рРНК настолько велика, что области ее образования под микроскопом выглядят более плотными и темными (ядрышки в ядре).
Все виды РНК синтезируются на ДНК, которая служит матрицей для их создания.