Органоиды специального назначения
Какие особенности строения клетки могут обеспечить выполнение функций, свойственных целостному организму?
Кроме органоидов, характерных для всякой клетки, у одноклеточных организмов существуют также органоиды специального назначения, помогающие им осуществлять функции организменного уровня:
- движение и захват пищи — ложноножки (амеба), жгутики (эвглена), реснички инфузория); (
- выделение — сократительные вакуоли;
- раздражимость — светочувствительный глазок (эвглена, хламидомонада).
Значение появления многоклеточности
Подумайте, какое значение для эволюции жизни на Земле имело появление многоклеточности.
Появление многоклеточности сделало возможным формирование специализированных клеток, развитие разнообразных, выполняющих определенные функции тканей и органов. Специализация, в свою очередь, повышает эффективность работы организма в целом, усложняет его структуру, обеспечивает более сложные и адаптивные формы поведения. Таким образом, появление многоклеточности стало важнейшим этапом в эволюции жизни на Земле.
Диссимиляция
Что такое диссимиляция? Перечислите ее этапы.
Диссимиляция, или энергетический обмен, — это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии.
Диссимиляция у аэробных (кислорододышащих) организмов происходит в три этапа:
- подготовительный — расщепление высокомолекулярных соединений до низкомолекулярных без запасания энергии;
- бескислородный — частичное бескислородное расщепление соединений, энергия запасается в виде АТФ;
- кислородный — окончательное расщепление органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.
Диссимиляция у анаэробных (не использующих кислород) организмов происходит в два этапа: подготовительный и бескислородный. В данном случае органические вещества расщепляются не полностью и энергии запасается гораздо меньше.
Роль АТФ в обмене веществ
В чем заключается роль АТФ в обмене веществ в клетке?
АТФ (аденозинтрифосфорная кислота) — нуклеотид, состоящий из азотистого основания (аденина), пятиуглеродного моносахарида (рибозы) и трех остатков фосфорной кислоты. Это универсальное, встречающееся в самых разных клетках макроэргическое соединение, в котором между остатками фосфорной кислоты присутствуют две высокоэнергетические связи. При разрыве такой связи отщепляется остаток фосфорной кислоты и высвобождается большое количество энергии (40 кДж/моль). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фосфорной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекул АТФ в АДФ (или даже в АМФ).
Синтез АТФ в клетке
Какие структуры клетки осуществляют синтез АТФ?
В эукариотических клетках синтез основной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пластидах АТФ образуется как промежуточный продукт световой стадии фотосинтеза.
Ассимиляция
Что такое ассимиляция?
Ассимиляция, или пластический обмену — это совокупность всех процессов биосинтеза, протекающих в живых организмах. Ассимиляция всегда сопровождается поглощением энергии, источником которой могут являться молекулы АТФ (например, в ходе биосинтеза белка) или солнечный свет (в случае фотосинтеза). Кроме энергии для осуществления процессов ассимиляции нужен материал, из которого организм сможет образовывать необходимые ему органические соединения. Для автотрофов это углекислый газ (СO2), вода, минеральные соли. Гетеротрофам нужны готовые органические соединения. В их числе так называемые незаменимые вещества: молекулы, которые гетеротрофы самостоятельно синтезировать не могут и должны получать с пищей. В случае человека это витамины, жирные кислоты с большим количеством двойных связей, многие аминокислоты.
Типы питания
Опишите известные вам типы питания.
Существует три типа питания.
Автотрофное питание. Автотрофные организмы способны самостоятельно синтезировать необходимые органические соединения, используя в качестве источника углерода углекислый газ. Источником энергии при этом является солнечный свет или окисление неорганических соединений.
Гетеротрофное питание. Гетеротрофные организмы в качестве источника углерода и в качестве источника энергии используют готовые органические вещества.
Миксотрофное питание. Миксотрофные организмы способны питаться и как автотрофы, и как гетеротрофы. Например, эвглена зеленая на свету ведет себя как автотроф, самостоятельно синтезируя органические вещества, а в темноте — как гетеротроф (питается готовыми органическими соединениями). К миксотрофам относятся также некоторые паразитические высшие растения.
Автотрофы
Какие организмы называют автотрофными?
Автотрофными называют организмы, способные синтезировать органические вещества за счет энергии солнечного света или энергии, выделяющейся при окислении неорганических соединений. При этом источником углерода является углекислый газ. К организмам, использующим энергию солнечного света, относятся растения, цианобактерии и некоторые бактерии. Все они объединены в группу фотосинтетиков. Растения и цианобактериии (сине-зеленые водоросли) осуществляют фотосинтез с выделением кислорода; бактерии — без выделения кислорода. Автотрофов, использующих для получения энергии окисление неорганических веществ, называют хемосинтетиками. К ним относят несколько древних групп прокариот: серобактерии (окисляют сероводород до серы), железобактерии (окисляют Fe2+ до Fe3+) и др.
Гетеротрофы
Каковы признаки гетеротрофного типа питания? Приведите примеры гетеротрофных организмов.
При гетеротрофном типе питания в качестве источника углерода и источника энергии организмы используют готовые органические соединения. Следовательно, гетеротрофные организмы полностью зависят от автотрофных, которые служат для них поставщиками органических веществ — прямыми (в случае травоядных) либо опосредованными (в случае, например, хищников). Гетеротрофные организмы — это все животные, грибы, большинство бактерий.
Значение Солнца для жизни на Земле
Как вы думаете, почему все живое на Земле можно назвать «детьми Солнца»?
Основным процессом, обеспечивающим появление на Земле органических веществ, является фотосинтез. Источником же энергии для фотосинтеза является солнечный свет. Почти все живые организмы используют энергию солнечного света, одни напрямую, запасая ее в виде органических соединений (фотосинтетики-автотрофы), другие опосредованно через использование готовых органических соединений, созданных растениями (гетеротрофы). Исключение составляет лишь уникальная группа бактерий-хемосинтетиков.